蔡虹,博士,副教授,主要从事流体力学中的非线性偏微分方程组的数学理论研究,2017年6月毕业于厦门大学,获理学博士学位,师从谭忠教授。2017年获得“福建省优秀博士学位论文”。2015年9月到美国佐治亚理工大学访学一年,合作导师为潘荣华教授。迄今,在Arch. Rational Mech. Anal., J.Math.Pures.Appl.等国内外著名数学期刊共发表SCI论文20余篇;主持国家自然科学基金青年项目1项,山东省自然科学基金1项,学院人才基金1项,参与国家自然科学基金面上项目1项。 主持的科研项目情况 国家自然科学基金,No.11801295,起止时间:2019.01-2021.12 山东省自然科学基金,No. ZR2018BA008,起止时间:2018.03-2020.12 近期发表的主要SCI收录科研论文 1. H. Cai,G. Chen, Y. Shen, A Finsler type Lipschitz optimal transport metric for a quasilinear wave equation, J. Differential Equations 356 (2023), 289-335. 2. H. Cai,G. Chen, Y. Du, Y. Shen, Uniqueness of conservative solutions to a one-dimensional general quasilinear wave equation through variational principle, J. Math. Phys.63(2022), no.2, Paper No. 021508, 21 pp. 3. H. Cai,G. Chen, H. Mei, Uniqueness of dissipative solution for Camassa-Holm equation with peakon-antipeakon initial data, Appl. Math. Lett. 120 (2021), Paper No. 107268, 8 pp. 4. H. Cai, X. Zhang, Existence and uniqueness of time periodic solutions to the compressible magneto-micropolar fluids in a periodic domain, Z. Angew. Math. Phys. 71 (2020), no. 6, Paper No. 184, 24 pp. 5. H. Cai, G. Chen, Y. Du, Uniqueness and regularity of conservative solution to a wave system modeling nematic liquid crystal, J. Math. Pures Appl. 117 (2018), 185-220. 6. H. Cai,G. Chen, R.M. Chen, Y. Shen, Lipschitz metric for the Novikov equation, Arch. Ration. Mech. Anal. 229 (2018), no. 3, 1091-1137. 7. H. Cai, T. Zhong, Lipschitz metric for conservative solutions of the modified two component Camassa-Holm system, Z. Angew. Math. Phys. 69 (2018), no. 4, Art. 98, 30 pp. 8. H. Cai, T. Zhong, Uniqueness of conservative solutions to the modified two component Camassa-Holm system via characteristics, J. Math. Anal. Appl. 461 (2018), no. 2, 1067-083. |